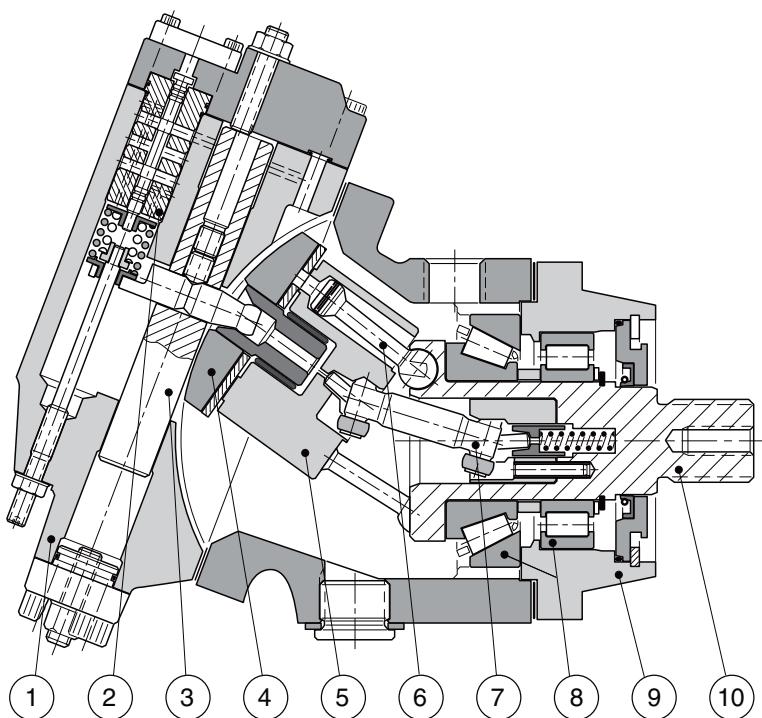


V12



2

Content	Page
V12 cross section	8
Specifications	8
Efficiency diagrams	9
Ordering codes	10
V12 installation:	
- ISO version	14
- Cartridge version	16
- SAE version	18
Bearing life	20
Controls (general information)	21
- AC pressure compensator	21
- AH pressure compensator	22
- EO electrical, two-position control	23
- EP electrical, proportional control	24
- HO hydraulic, two-position control	25
- HP hydraulic, proportional control	26
- Control installation dimensions	27
Flushing valve	28
High speed operation	28
Accessory valve blocks	29
Speed sensor	30

V12 cross section

1. End cap
2. Servo control valve
3. Setting piston
4. Valve segment
5. Cylinder barrel1
6. Spherical piston with laminated piston ring
7. Synchronizing shaft
8. Heavy-duty roller bearings
9. Bearing housing
10. Output shaft

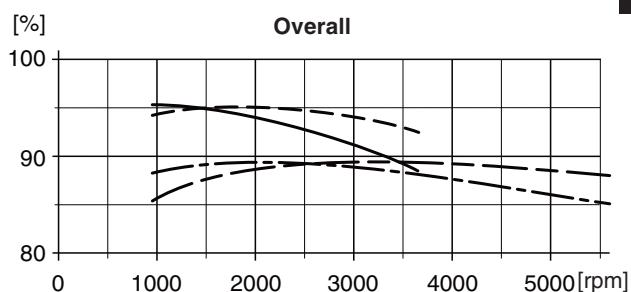
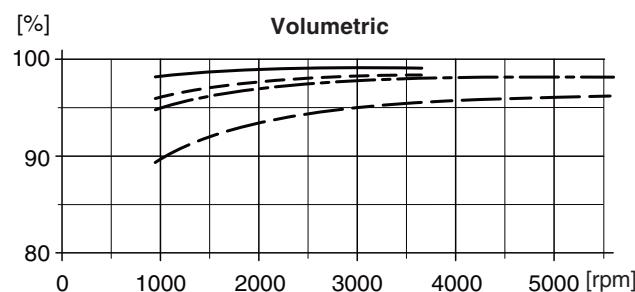
Specifications

V12 frame size	60	80	160*
Displacement [cm³/rev]			
- max, at 35°	60	80	160
- min, at 6.5°	12	16	32
Operating pressure [bar]			
- max intermittent ¹⁾	480	480	
- max continuous	420	420	
Operating speed [rpm]			
- at 35°, max intermittent ¹⁾ max continuous	4 400	4 000	3200
- at 6.5°–10°, max intermittent ¹⁾ max continuous	3 600	3 100	2500
- min continuous	7 000	6 250	5000
	5 600	5 000	4000
	50	50	
Flow [l/min]			
- max intermittent ¹⁾	265	320	510
- max continuous	215	250	400
Torque (theor.) at 100 bar [Nm]	95	127	255
Output power [kW]			
- max intermittent ¹⁾	150	175	280
- max continuous	95	105	170
Corner power [kW]			
- intermittent ¹⁾	335	400	640
- continuous	235	280	450
Mass moment of inertia (x10⁻³) [kg m²]	3.1	4.4	14.6
Weight [kg]	28	33	58

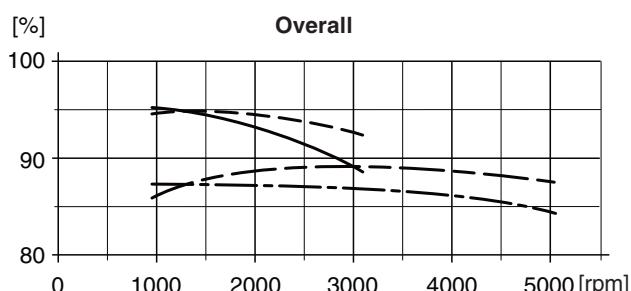
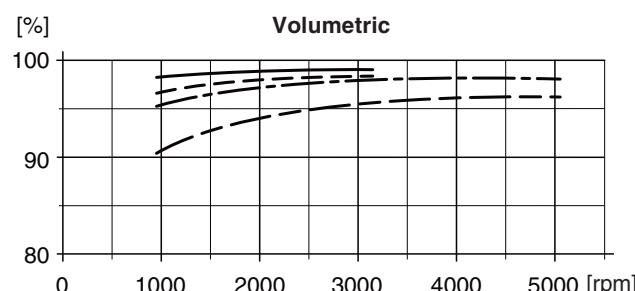
1) Max 6 seconds in any one minute.

* Will be replaced by V14-160.

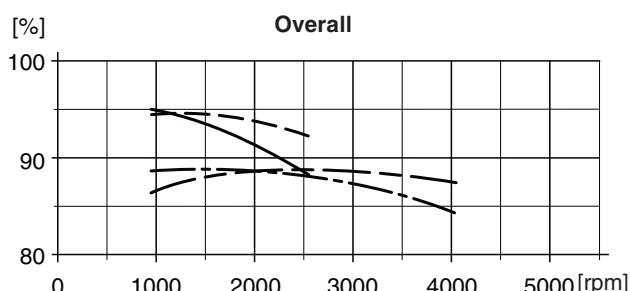
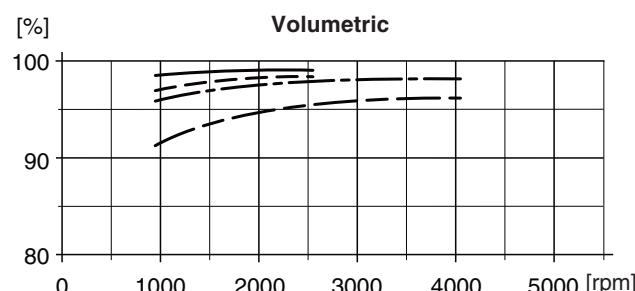
Efficiency diagrams

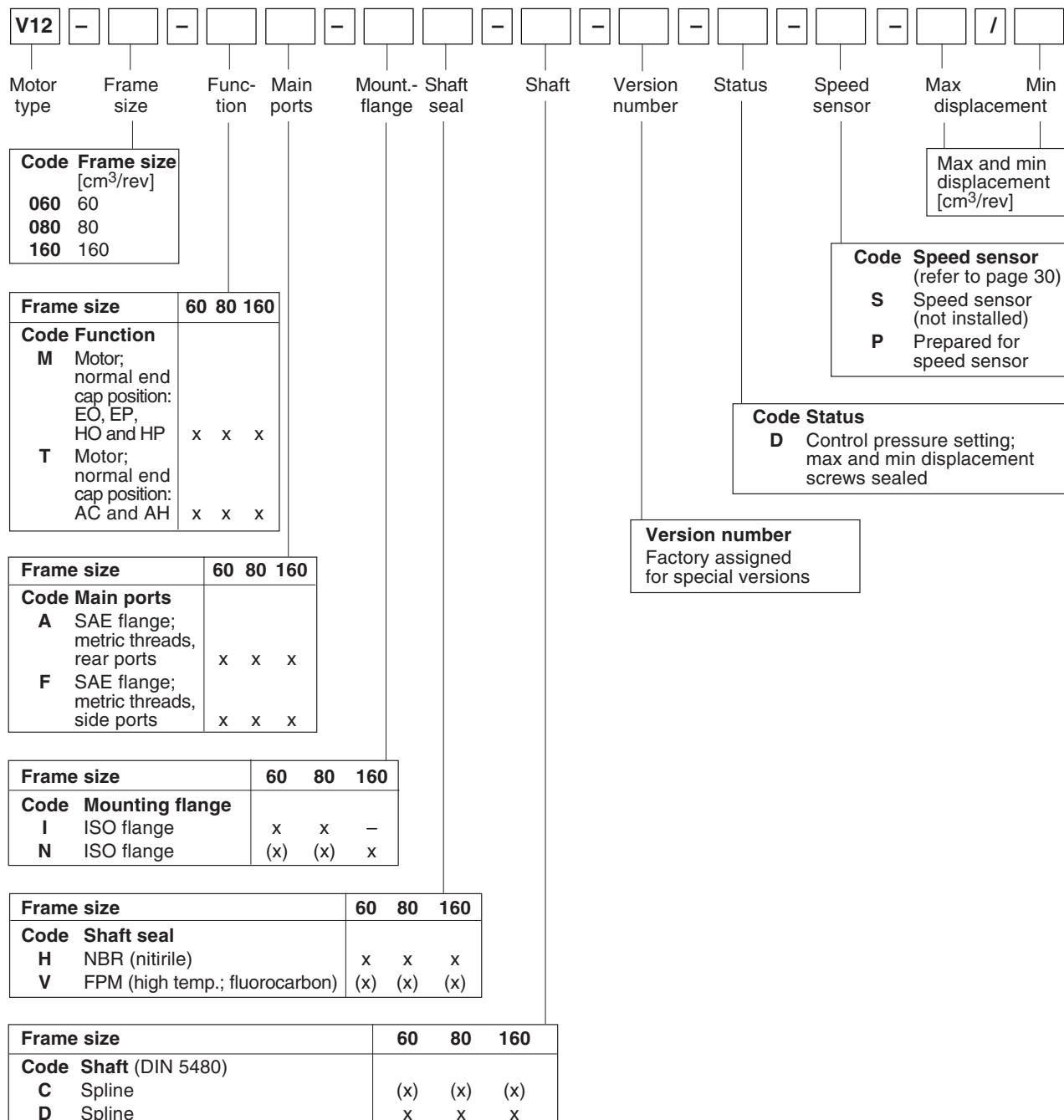


The following diagrams show volumetric and overall efficiencies versus shaft speed at 210 and 420 bar operating pressure, and at full (35°) and reduced (10°) displacements.

Information on efficiencies for a specific load condition can be made available from Parker Hannifin.

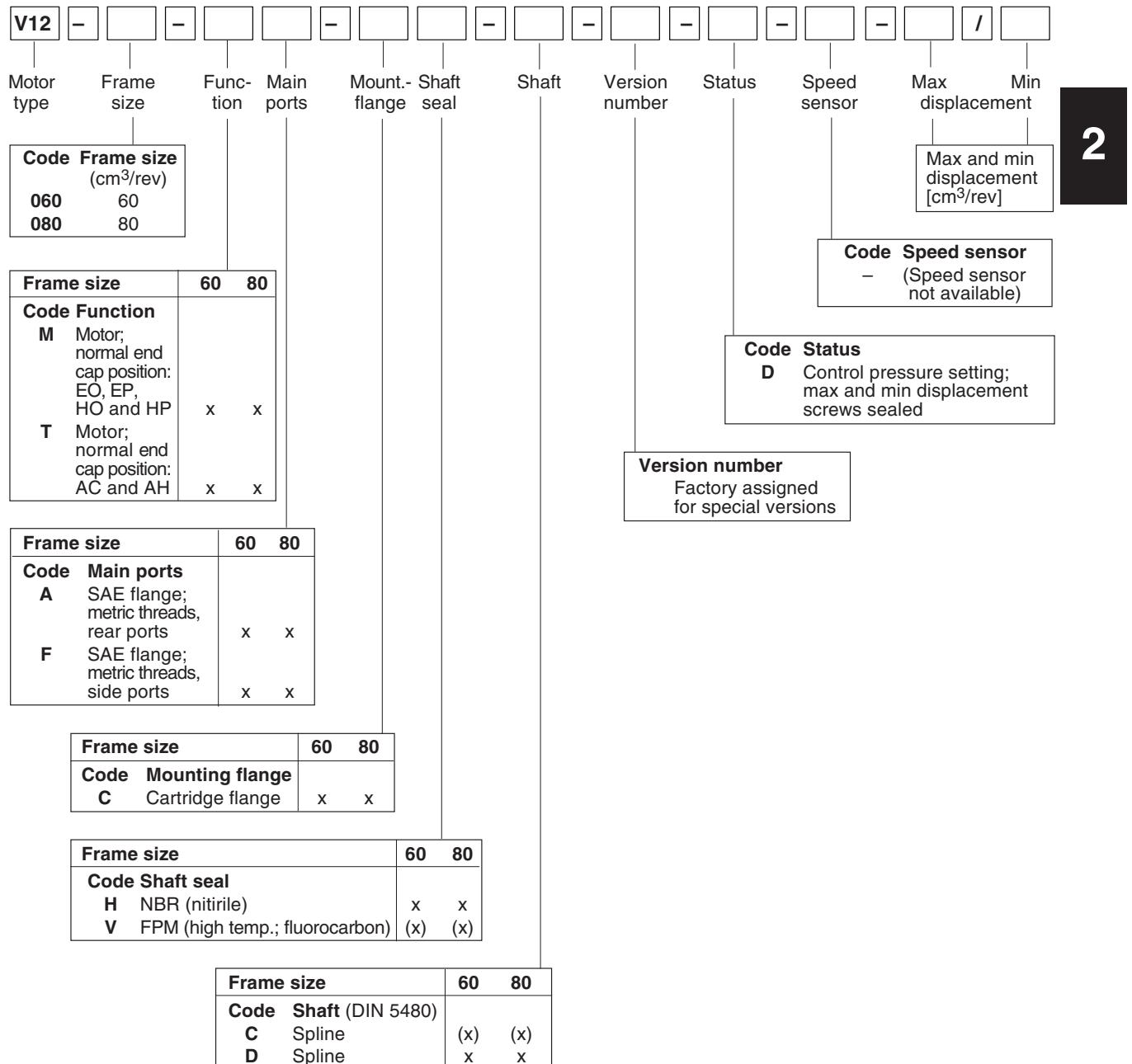


————— 210 bar at full displacement
 - - - - - 420 bar " " "
 - - - - - 210 bar at reduced displacement
 - - - - - 420 bar " " "

2

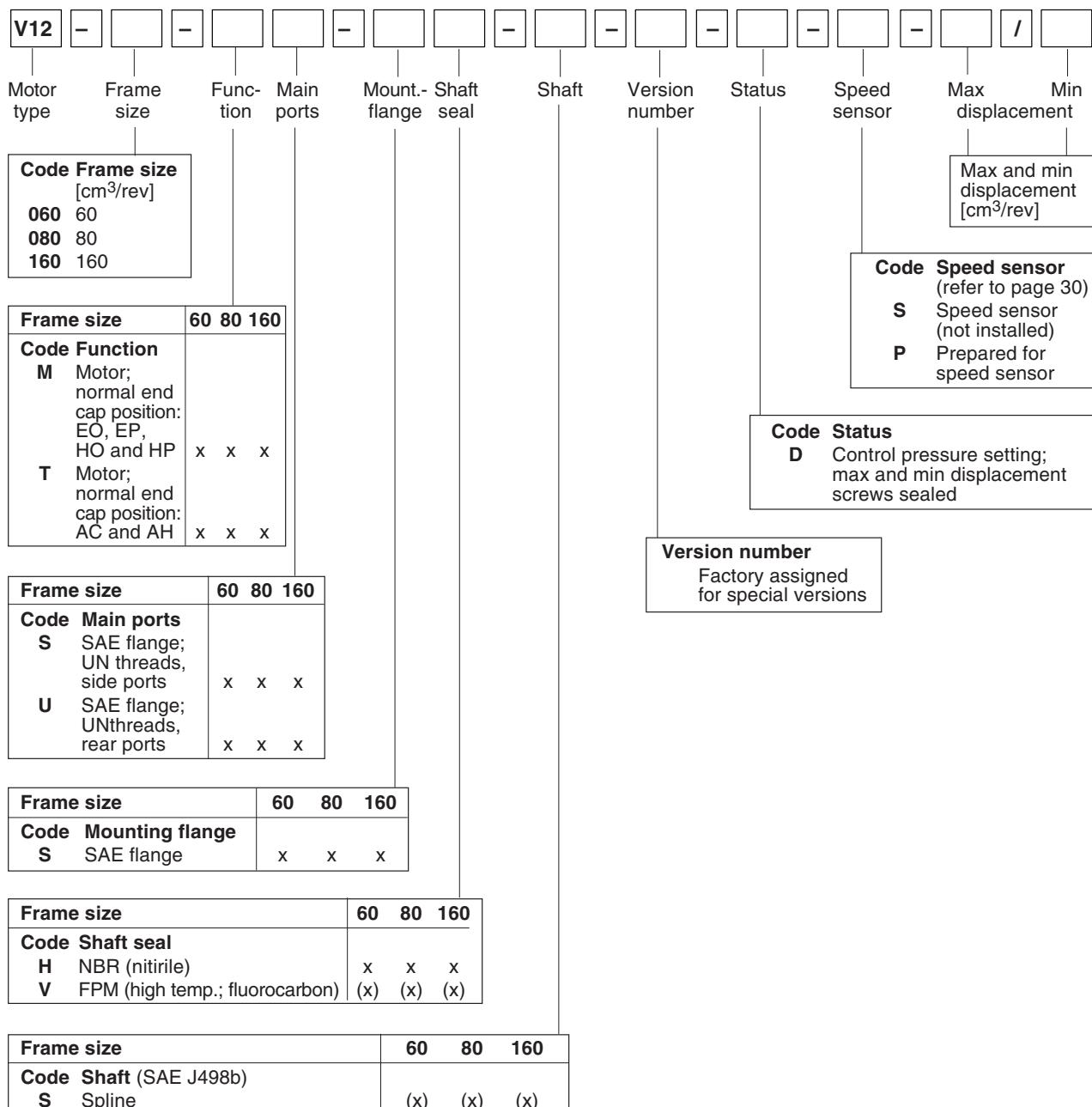


V12-60


V12-80

V12-160



ISO version (basic configuration)


x: Available (x): Optional - : Not available

Cartridge version (basic configuration)

x: Available (x): Optional – : Not available

SAE version (basic configuration)

Controls and flushing valve

—— Basic configuration (ISO, Cartridge or SAE; see previous three pages) —— | |

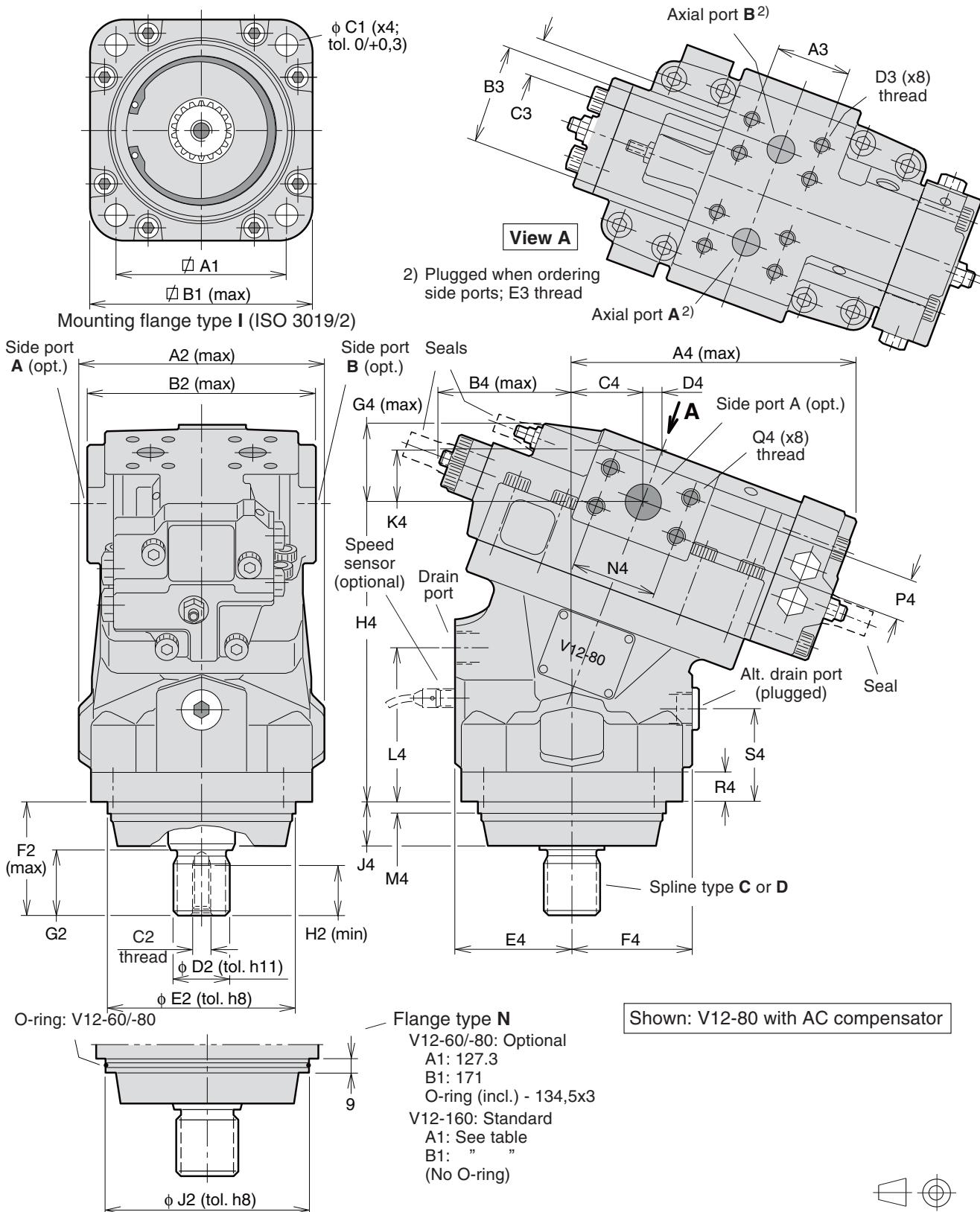
Control designation Settings Flushing valve

2

Frame size	60	80	160
Code			
AC I 01 I	Control designation		
AC E 01 I	Pressure compensator, internal pilot pressure, internal servo supply	x	x
AC E 01 I	Pressure compensator, external pilot pressure, internal servo supply	(x)	(x)
AH I 01 I	Pressure compensator, hydraulic override, internal pilot pressure, internal servo supply	x	x
AH E 01 I	Pressure compensator, hydraulic override, external pilot pressure, internal servo supply	(x)	(x)
EOL 01 I	Electrohydraulic, two-position, 12 VDC, internal servo supply	x	x
EOL 01 E	Electrohydraulic, two-position, 12 VDC, external servo supply	(x)	(x)
EOH 01 I	Electrohydraulic, two-position, 24 VDC, internal servo supply	x	x
EOH 01 I	Electrohydraulic, two-position, 24 VDC, external servo supply	(x)	(x)
EPL 01 I	Electrohydraulic proportional, 12 VDC, internal servo supply	x	x
EPL 01 E	Electrohydraulic, proportional, 12 VDC, external servo supply	(x)	(x)
EPH 01 I	Electrohydraulic, proportional, 24 VDC, internal servo supply	x	x
EPH 01 E	Electrohydraulic, proportional, 24 VDC, external servo supply	(x)	(x)
HOS 01 I	Hydraulic two-position, standard version internal servo supply	x	x
HOS 01 E	Hydraulic two-position, standard version external servo supply	(x)	(x)
HPS 01 I	Hydraulic proportional, standard version internal servo supply	x	x
HPS 01 E	Hydraulic proportional, standard version external servo supply	(x)	(x)

NOTE: '01' - Standard nozzles

x: Available (x): Optional - : Not available


Settings

AC, AH: Threshold pressure: **150, 200 or 250** bar / Modulating pressure: **015, 025 or 050** bar
 EO, EP: Threshold current: 12 VDC - **400** mA; 24 VDC - **200** mA
 Modulating current: EO - **000**; EP, 12 VDC - **600** mA; EP, 24 VDC - **300** mA
 HO, HP: Threshold pressure: **010** bar / Modulating pressure: HO - **000**; HP - **015 or 025** bar

Code Flushing valve

L 01 Integrated flushing valve; 01 - std. nozzle 1.3 mm (option; refer to page 28).

ISO version

Size	V12-60	V12-80	V12-160
A1	113.2	113.2	158.4
B1	151	151	212
C1	14	14	18
A2	159	165	197
B2	146	154	179
C2	M12	M12	M12
D2*	34.6	39.6	49.6
E2	125	125	180
F2*	73	78	96
G2*	40	45	55
H2	28	24	24
J2	140	140	see E2
A3	50.8	50.8	66.7
B3	66	66	83
C3	23.8	23.8	31.75
D3 ¹⁾	M10x20	M10x20	M14x23
E3 ²⁾	M22x1.5	M22x1.5	M22x1.5
A4	188	193	218
B4	87	90	114
C4	45	48.3	56
D4	13.4	13.1	14.2
E4	76	78	94
F4	77	80	94
G4	55	57	67
H4	188	199	243
J4	31.5	31.5	39.5
K4	35.5	34.6	37.4
L4	94	101	125
M4	9	9	9
N4	50.8	57.2	66.7
P4	23.8	27.8	31.75
Q4 ¹⁾	M10x20	M12x23	M14x23
R4	20	20	22
S4	57.5	60.5	77

- * Dimension for shaft type **D**.
- Shaft type **C** dimensions are 5 mm shorter than those of type D.
- 1) Metric thread x depth in mm
- 2) Metric thread x pitch in mm
- 3) '30° involute spline, side fit'.

Ports

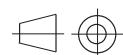
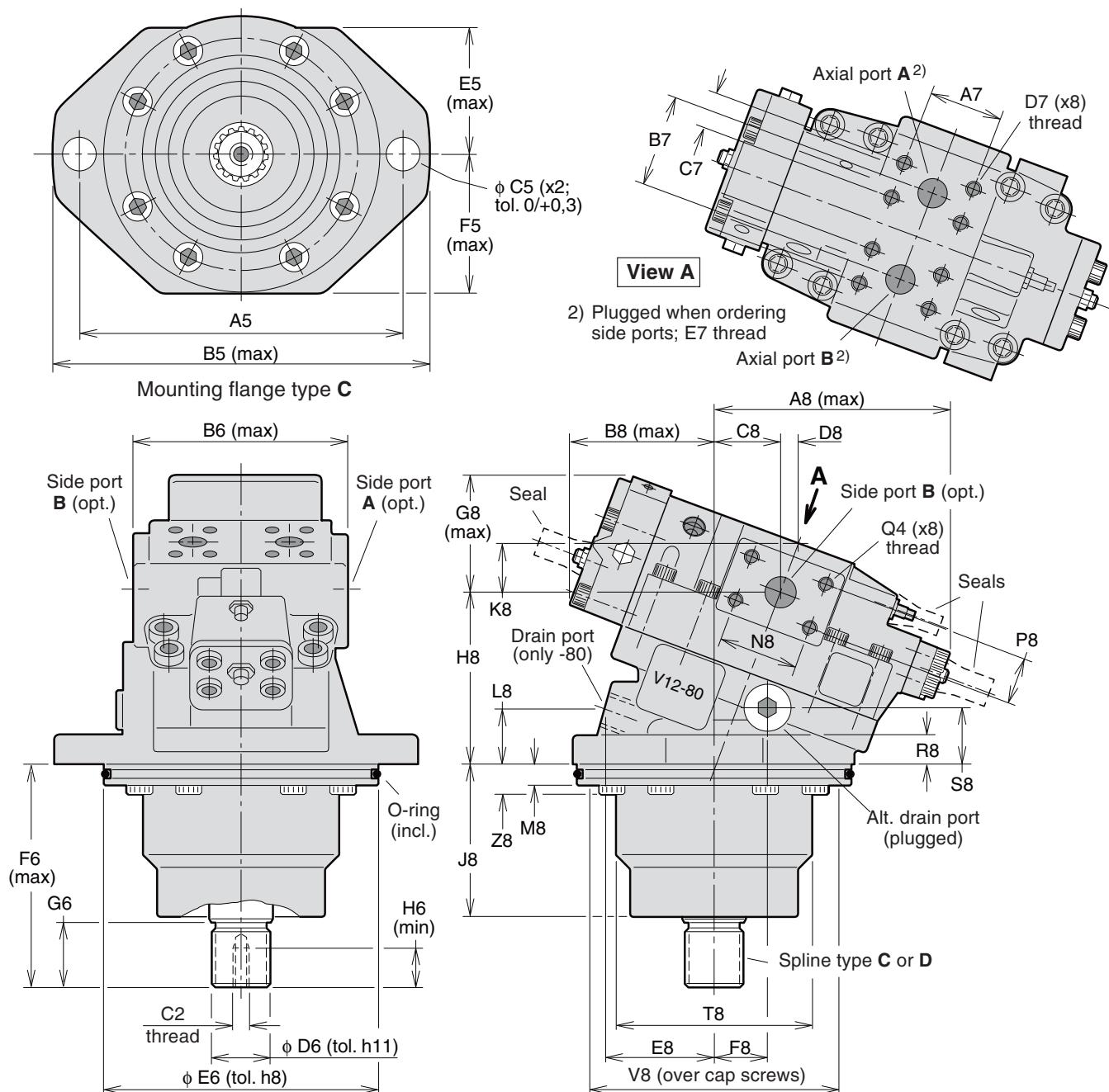
Type	V12-60	V12-80	V12-160
Axial	19 [3/4"]	19 [3/4"]	32 [1 1/4"]
Side	19 [3/4"]	25 [1"]	32 [1 1/4"]
Drain ²⁾	M22x1.5	M22x1.5	M22x1.5

Main ports: ISO 6162, 41.5 MPa, type II
(SAE J518c, 6000 psi)

2

Spline type **C**³⁾ (DIN 5480)

Size	Dimension
V12-60	W30x2x14x9g
-80	W35x2x16x9g
-160	W45x2x21x9g



Spline type **D**³⁾ (DIN 5480)

Size	Dimension
V12-60	W35x2x16x9g
-80	W40x2x18x9g
-160	W50x2x24x9g

Flange

Size	I	N
V12-60	standard	optional
-80	standard	optional
-160	-	standard

Cartridge version

Size	V12-60	V12-80
A5	200	224
B5	238	263
C5	18	22
E5	78.5	89.5
F5	83	99.5
B6	146	154
C6	M12	M12
D6*	34.6	39.6
E6	160	190
F6	133	156.5
G6*	40	45
H6	28	28
A7	50.8	50.8
B7	66	66
C7	23.8	23.8
D7 ¹⁾	M10x20	M10x22
E7 ²⁾	M22x1.5	M22x1.5
A8	166	173
B8	108	108
C8	45	48.3
D8	13.4	13.1
E8	77	77.5
F8	39	38
G8	86	85
H8	127	120.5
J8	90	106
K8	35.5	34.6
L8	39	39
M8	15	15
N8	50.8	57.2
P8	23.8	27.8
Q8 ¹⁾	M10x20	M12x23
R8	20	20
S8	39	39
T8	121	139
V8	151	177
Z8	22	22

* Dimension for shaft type **D**.
 Shaft type **C** dimensions are 5 mm
 shorter than those of type **D**.

- 1) Metric thread x depth in mm
- 2) Metric thread x pitch in mm
- 3) '30° involute spline, side fit'.

Ports

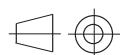
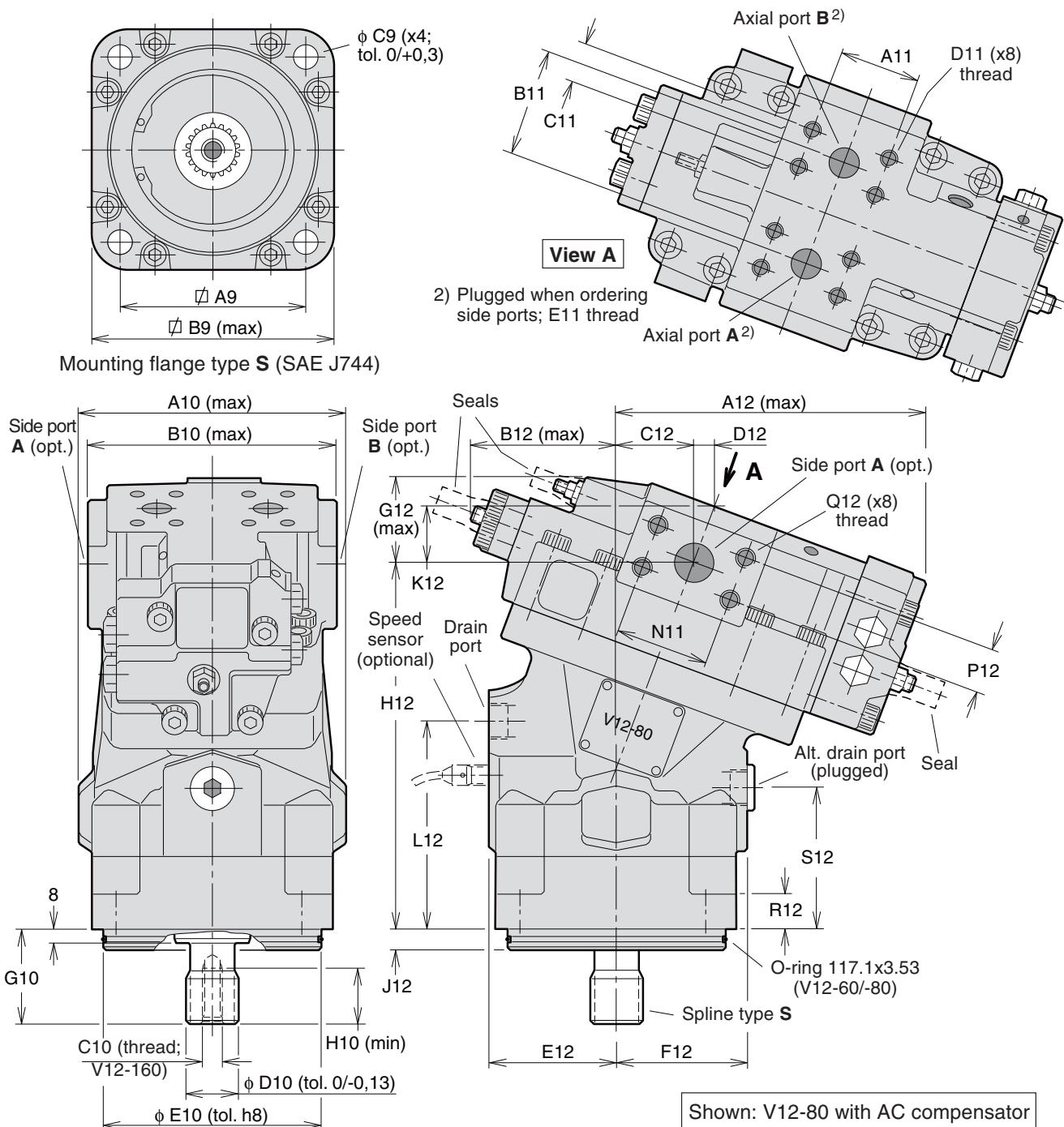
Type	V12-60	V12-80
Axial	19 [3/4"]	19 [3/4"]
Side	19 [3/4"]	25 [1"]
Drain	—	M22x1.5
Alt. drain	M18x1.5	M18x1.5

Main ports: ISO 6162, 41.5 MPa, type II
 [SAE J518c, 6000 psi]

2

Spline type **C**³⁾ (DIN 5480)

Size	Dimension
V12-60	W30x2x14x9g
-80	W35x2x16x9g



Spline type **D**³⁾ (DIN 5480)

Size	Dimension
V12-60	W35x2x16x9g
-80	W40x2x18x9g

O-rings (70° IRH)

Size	Dimension
V12-60	150x4
-80	180x4

SAE version

Size	V12-60	V12-80	V12-160
A9	114.5	114.5	161.6
B9	149	149	200
C9	14.3	14.3	20.6
A10	159	165	197
B10	146	154	179
C10	-	-	1 $\frac{1}{2}$ "-13
D10	31.22	31.22	43.71
E10	127.00	127.00	152.40
G10	55.6	55.6	75
H10	-	-	36
A11	50.8	50.8	66.7
B11	66	66	83
C11	23.8	23.8	31.75
D11 ¹⁾	3 $\frac{1}{8}$ "-16 x20	3 $\frac{1}{8}$ "-16 x20	1 $\frac{1}{2}$ "-13 x23
E11 ²⁾	M22x1.5	M22x1.5	M22x1.5
A12	188	193	218
B12	87	90	114
C12	45	48.3	56
D12	13.4	13.1	14.2
E12	76	78	94
F12	77	80	94
G12	55	57	67
H12	212	223	276
J12	12.7	12.7	12.7
K12	35.5	34.6	37.4
L12	118	125	157
N12	50.8	57.2	66.7
P12	23.8	27.8	31.75
Q12*	3 $\frac{1}{8}$ "-16 x20	7 $\frac{1}{16}$ "-14	1 $\frac{1}{2}$ "-13 x23
R12	20	20	23.5
S12	81.5	84.5	109

1) UNC thread x depth in mm

2) Metric thread x pitch in mm.

Ports

Type	V12-60	V12-80	V12-160
Axial	3 $\frac{1}{4}$ "	3 $\frac{1}{4}$ "	1 $\frac{1}{4}$ "
Side	3 $\frac{1}{4}$ "	1"	1 $\frac{1}{4}$ "
Drain	7 $\frac{1}{8}$ "-14	7 $\frac{1}{8}$ "-14	11 $\frac{1}{16}$ "-12

Main ports: 6000 psi (SAE J518c).

Drain ports: O-ring boss, UNF thread (SAE 514).

2

Flange type **S** (SAE J744c)

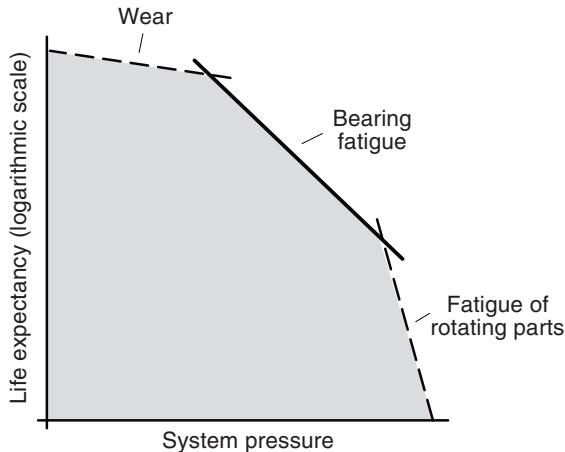
Size	Dimension
V12-60	SAE 'C'
	-80
	-160
	SAE 'D'

Spline type **S** (SAE J498b*)

Size	Dimension
V12-60	SAE 'C' (14T, 12/24 DP)
	-80
	-160
	SAE 'D' (13T, 8/16 DP)

* '30° involute spline, class 1, flat root, side fit'.

Bearing life


General information

Bearing life can be calculated for that part of the load/life curve (shown below) that is designated 'Bearing fatigue'. 'Fatigue of rotating parts' and 'Wear' caused by fluid contamination, etc., should also be taken into consideration when estimating the service life of a motor/pump in a specific application.

In reality, bearing life can vary considerably due to the quality of the hydraulic system (fluid condition, cleanliness, etc.)

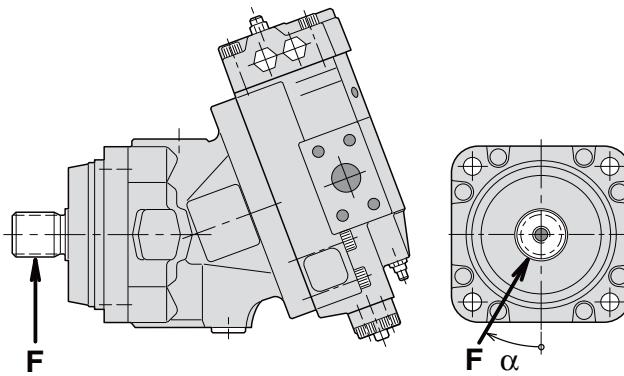
Bearing life calculations are mainly used when comparing different motor frame sizes. Bearing life, designated B_{10} (or L_{10}), depends of system pressure, operating speed, external shaft loads, fluid viscosity in the motor case, and fluid contamination level.

The B_{10} value means that 90% of the bearings survive at least the number of hours calculated. Statistically, 50% of the bearings will survive at least five times the B_{10} life.

Hydraulic motor life versus system pressure.

Bearing life calculation

An application is usually governed by a certain duty or work cycle where pressure, speed and displacement vary with time during the cycle.


Bearing life is also dependent on external shaft loads, case fluid viscosity and fluid contamination.

Parker Hannifin has a computer program for bearing life calculation and will assist in determining life for specific V12 load conditions; refer to MI 170, 'V12 bearing life', available from Parker Hannifin.

Required information

When requesting a bearing life calculation from Parker Hannifin, the following information (where applicable) should be provided:

- A short presentation of the application
- V12 size and version
- Duty cycle (pressure and speed versus time at specified displacements)
- Low pressure
- Case fluid viscosity
- Life probability (B_{10} , B_{20} , etc.)
- Direction of rotation (L or R)
- Axial load
- Fixed or rotating radial load
- Distance between flange and radial load
- Angle of attack (α) as defined below.

Controls (general information)

The following six V12 controls described below satisfy most application requirements:

- Pressure compensator (AC and AH)
- Two-position controls (EO and HO)
- Proportional controls (EP and HP).

All controls utilize a setting piston that connects to the valve segment (refer to the picture on page 8).

The built-in four-way servo valve acts on the setting piston and determines the displacement which can vary between 35° (max) and 6.5° (min).

AC pressure compensator

The AC compensator is used in off-road vehicle hydrostatic transmissions; it automatically adjusts motor displacement to the output torque requirement (up to max available system pressure).

Normally, the motor stays in the minimum displacement position. When there is a demand for additional torque, i.e. when the vehicle enters an upgrade, the displacement increases (providing more torque) while the motor shaft speed decreases proportionally.

The threshold pressure (' p_s '; refer to the AC diagram) where displacement starts to increase, is adjustable between 150 and 400 bar.

To reach max displacement, an additional modulating pressure (Δp) above the threshold pressure (p_s) is required.

To satisfy specific hydraulic circuit requirements, a modulating pressure, Δp , of 15, 25 or 50 bar can be selected.

The AC compensator is available in two versions:

ACI 01 I - Internal pilot pressure

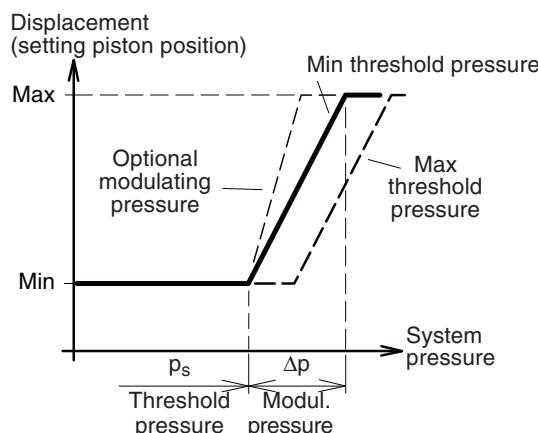
ACE 01 I - External pilot pressure; port X5 can, for (optional) example, be connected to the 'forward drive' pressure line of a vehicle transmission to prevent motor displacement increase when the vehicle is going downhill.

Gauge/pilot ports (AC compensator):

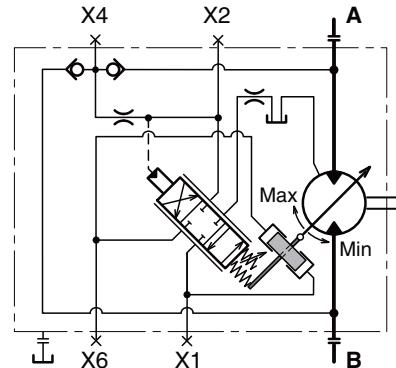
- X1 Setting piston pressure (increasing displ.)
- X2 Servo supply pressure (after orifice)
- X4 Servo supply pressure (before orifice)
- X5 External pilot pressure
- X6 Setting piston pressure (decreasing displ.)

Ports are:

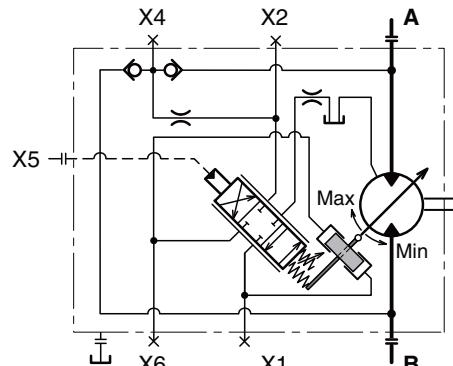
- M14x1.5 (ISO and cartridge versions)
- 9/16"-18 O-ring boss (SAE version).


Servo supply pressure is usually obtained from the main high pressure port through the built-in shuttle valve.

When using external servo supply, the servo pressure should be at least 30 bar.


The response time (i.e. from max to min displacement) is determined by orifices in the servo valve supply and return lines.

NOTE: Control ordering codes are shown on page 13 and installation dimensions on page 27.


2

AC diagram.

ACI 01 I schematic (spool in a balanced, mid-pos.).

ACE 01 I schematic (spool in a balanced, mid-pos.).

AH pressure compensator

The AH compensator is similar to the AC (page 21) but incorporates an hydraulic override device. It is utilized in hydrostatic transmissions where a high degree of manoeuvrability at low vehicle speeds is desirable.

When the override is pressurized, the servo piston moves to the max displacement position irrespective of system pressure, provided the servo supply pressure is at least 30 bar.

The AH compensator is available in two versions:

AHI 01 I - Same as the ACI except for the override; internal pilot pressure.

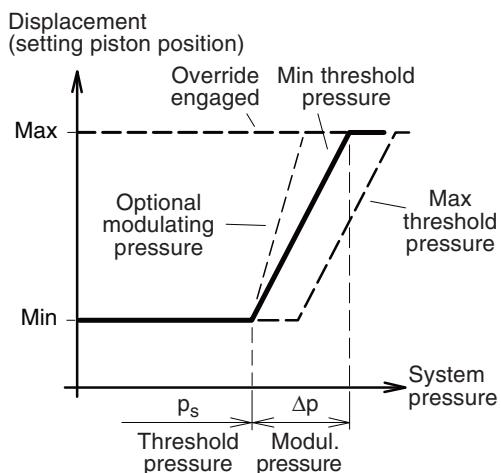
AHE 01 I - External pilot pressure (port X5; compare (optional) ACE, page 21).

Required override pressure, port X7 (min 20 bar):

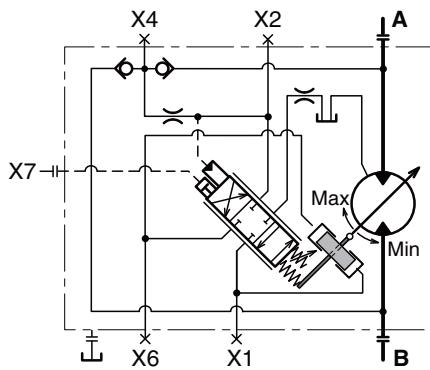
$$p_7 = \frac{p_s + \Delta p}{24} \text{ [bar]}$$

p_7 = Override pressure

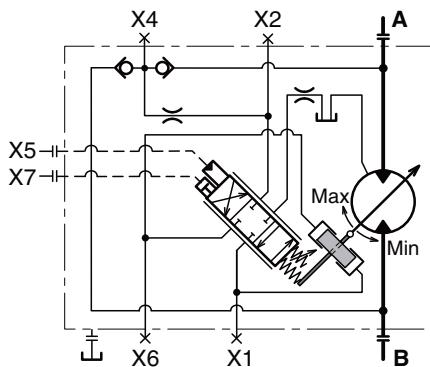
p_s = System pressure


Δp = Modulating pressure

Gauge/pilot ports (AH compensator):


- X1 Setting piston pressure (increasing displ.)
- X2 Servo supply pressure (after orifice)
- X4 Servo supply pressure (before orifice)
- X5 External pilot pressure
- X6 Setting piston pressure (decreasing displ.)
- X7 Override pressure

Ports are:


- M14x1.5 (ISO and cartridge versions)
- 9/16"-18 O-ring boss (SAE version).

AH diagram.

AHI 01 I schematic (spool in a balanced, mid-pos.).

AHE 01 I schematic (spool in a balanced, mid-pos.).

EO two-position control

The EO is a two-position control, where max and min displacements are governed by a DC solenoid attached to the control cover (refer to the installation drawing on page 27).

The EO control is utilized in transmissions where only two operating modes are required: Low speed/high torque or high speed/low torque.

The servo piston, normally in the max displacement position, shifts to the min displacement position when the solenoid is activated. Intermediate displacements cannot be obtained with this control.

Servo pressure is supplied internally (through the shuttle valve from one of the main high pressure ports) or externally (port X4).

The solenoid is either 12 or 24 VDC, requiring 1.2 and 0.6 A respectively. An electrical connector is included (DIN 43650/IP54).

The EO two-position control is available in four versions:

EOH 01 I - Internal servo supply, 24 VDC

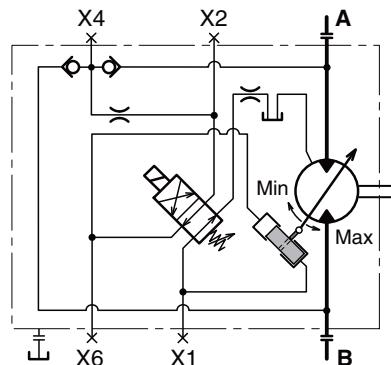
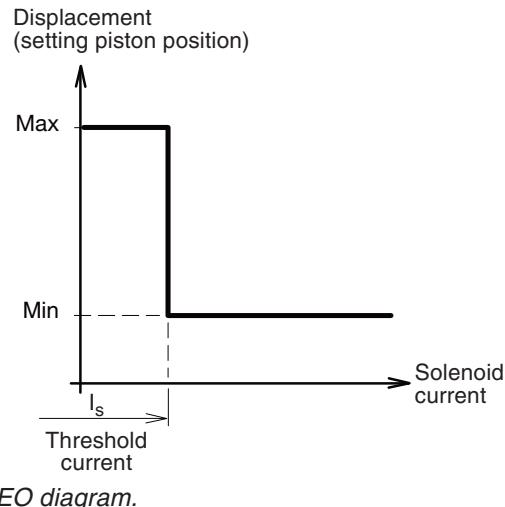
EOL 01 I - Internal servo supply, 12 VDC

EOH 01 E - External servo supply, 24 VDC (optional)

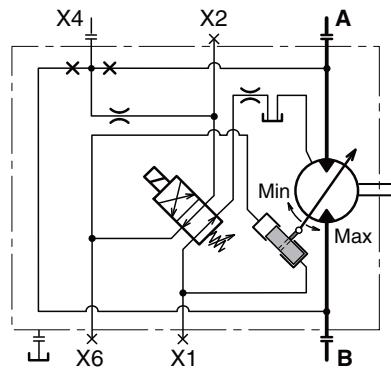
EOL 01 E - External servo supply, 12 VDC (optional)

Gauge ports (EO control):

X1 Setting piston pressure (max-to-min)



X2 Servo supply pressure (after orifice)

X4 Servo supply pressure (before orifice)


X6 Setting piston pressure (min-to-max)

Ports are:

- M14x1.5 (ISO and cartridge versions)
- 9/16"-18 O-ring boss (SAE version).

EO H 01 I schematic (non-activated solenoid).

EO H 01 E schematic (non-activated solenoid).

EP proportional control

The EP electrohydraulic proportional control is used in hydrostatic transmissions requiring a continuously variable shaft speed. The servo valve is governed by a DC solenoid attached to the control cover.

When the solenoid current increases above the threshold current, the servo piston starts to move from the max towards the min displacement position. The displacement vs. solenoid current is shown in the diagram to the right. Please note, that the shaft speed vs. current is non-linear; refer to the diagram below.

Solenoids are available in 12 and 24 VDC versions, requiring a max current of approx. 1.1 and 0.55 A respectively.

The threshold current (I_s) is factory set (0.4 A at 12 VDC/ 0.2 A at 24 VDC) but is adjustable (12 VDC: 0.25–0.45 A; 24 VDC: 0.10–0.23 A).

When utilizing the full displacement range, the required modulating current (ΔI) is 0.6 and 0.3 A respectively. In order to minimize hysteresis, a pulse-width modulated control signal of 70 to 90 Hz should be utilized.

NOTE: The modulating current (ΔI) is not adjustable.

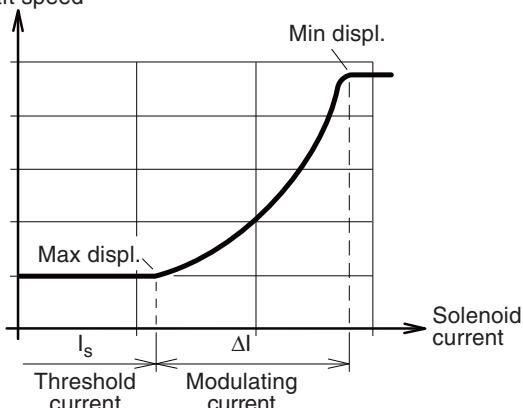
The EP control is available in four versions:

EP H 01 I - Internal servo supply, 24 VDC

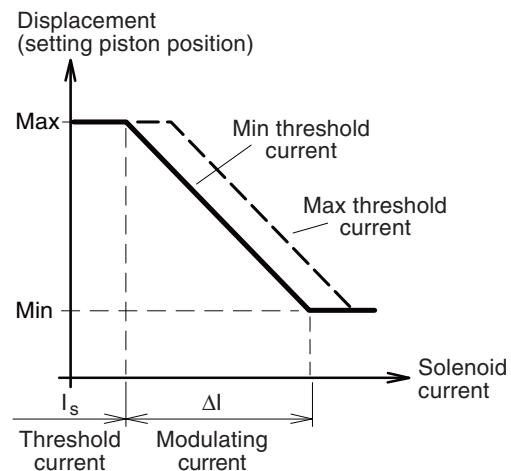
EP L 01 I - Internal servo supply, 12 VDC

EP H 01 E - External servo supply, 24 VDC (optional)

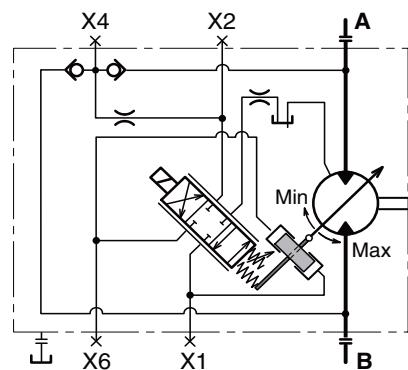
EP L 01 E - External servo supply, 12 VDC (optional)

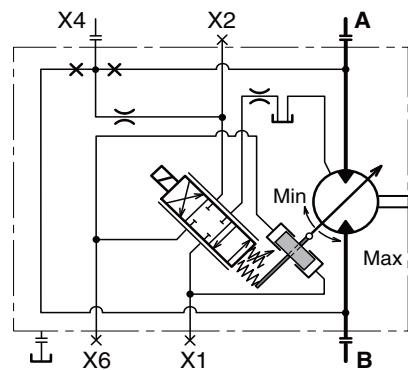

Gauge ports (EP control):

- X1 Setting piston pressure (decreasing displ.)
- X2 Servo supply pressure (after orifice)
- X4 Servo supply pressure (before orifice)
- X6 Setting piston pressure (increasing displ.)


Ports are:

- M14x1.5 (ISO and cartridge versions)
- 9/16"-18 O-ring boss (SAE version).


Shaft speed


Shaft speed vs. solenoid current (EP control).

EP diagram.

EP H 01 I schematic (spool in a balanced, mid-pos.).

EP H 01 E schematic (spool in a balanced, mid-pos.).

HO two-position control

The two-position HO control is similar to the EO (page 23) but the pilot signal is hydraulic. The position of the setting piston is governed by the built-in servo valve (same on all compensators and controls).

When the applied pilot pressure (port X5) exceeds the pre-set threshold pressure, the piston moves from the max to the min displacement position.

The threshold pressure is factory set at 10 bar but can be adjusted between 5 and 25 bar.

The HO two-position control is available in two versions:

HO S 01 I - Internal servo supply

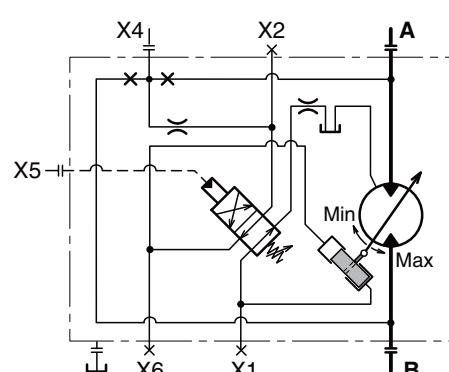
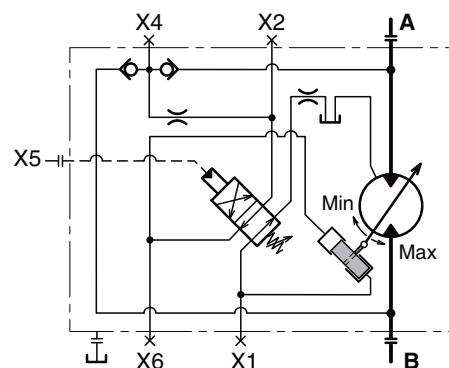
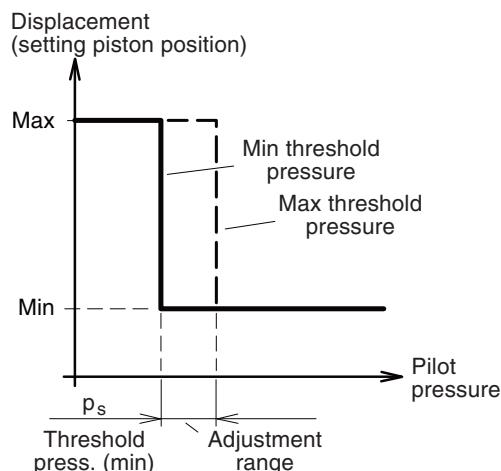
HO S 01 E - External servo supply (port X4)
 (optional)

Gauge/pilot ports (HO control):

X1 Setting piston pressure (max-to-min)

X2 Servo supply pressure (after orifice)

X4 Servo supply pressure (before orifice)




X5 External pilot pressure

X6 Setting piston pressure (min-to-max)

Ports are:

- M14x1.5 (ISO and cartridge versions)

- $\frac{9}{16}$ "-18 O-ring boss (SAE version).

HP proportional control

Like the EP control described on page 24, the HP proportional control offers continuously variable displacement, but the pilot signal is hydraulic.

Normally, the servo piston stays in the max displacement position. When a sufficiently high pilot pressure (p_s) is applied to port X5, the piston starts to move towards the min displacement position.

As can be seen in the diagram to the right, the displacement changes in proportion to the applied modulating pressure.

In contrast, shaft speed vs. pilot pressure is non-linear; refer to the diagram below.

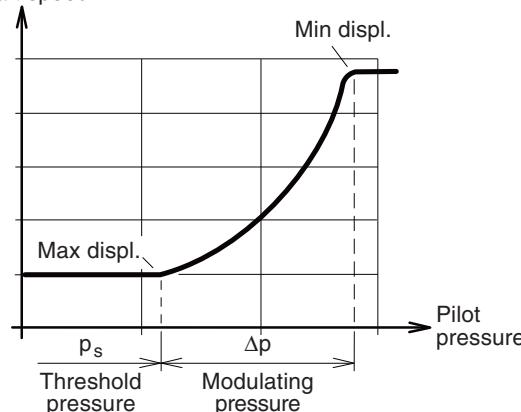
The following modulating pressures (Δp) can be selected: 15 or 25 bar.

The threshold pressure (p_s) is factory set at 10 bar but is adjustable between 5 and 25 bar.

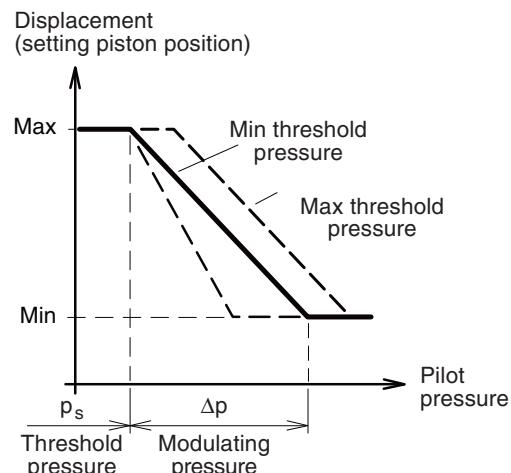
Two versions of the HP control are available:

HPS 01 I - Internal servo supply

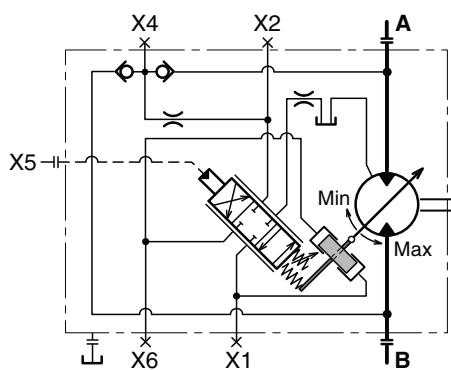
HPS 01 E - External servo supply (port X5)
(optional)

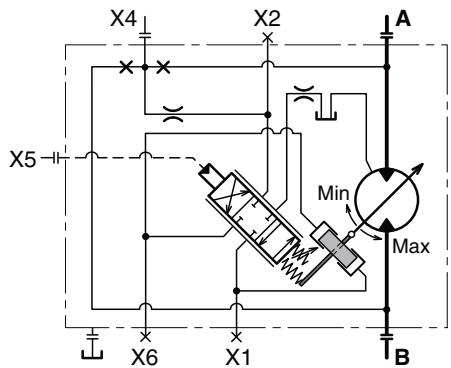

Gauge/pilot ports (HP control):

- X1 Servo piston pressure (decreasing displ.)
- X2 Servo supply pressure (after orifice)
- X4 Servo supply pressure (before orifice)
- X5 External pilot pressure
- X6 Servo piston pressure (increasing displ.)


Ports are:

- M14x1.5 (ISO and Cartridge versions)
- $\frac{9}{16}$ "-18 O-ring boss (SAE version).


Shaft speed

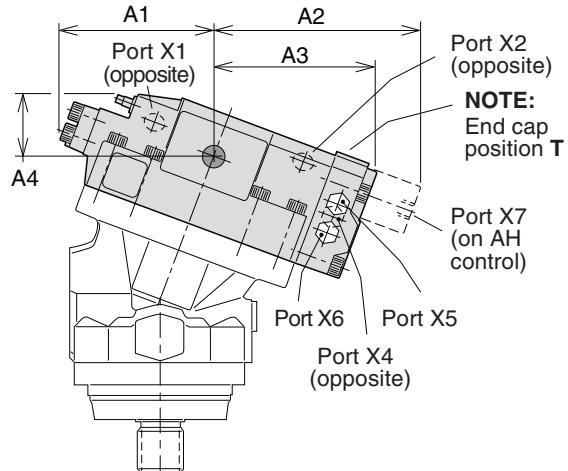

Shaft speed vs. pilot pressure (HP control).

HP diagram.

HP S 01 I schematic (spool in a balanced, mid-pos.).

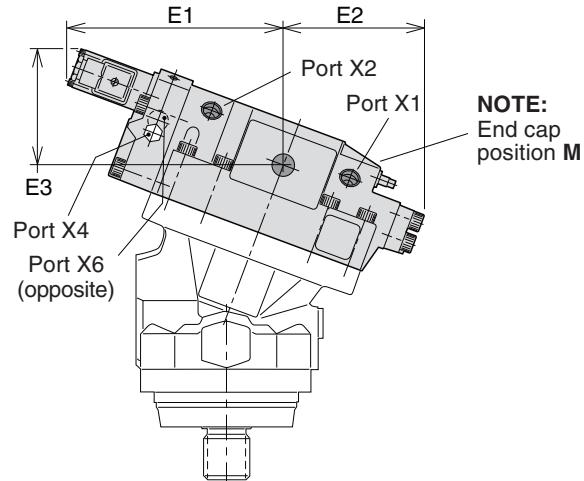
HP S 01 E schematic (spool in a balanced, mid-pos.).

Control installation dimensions

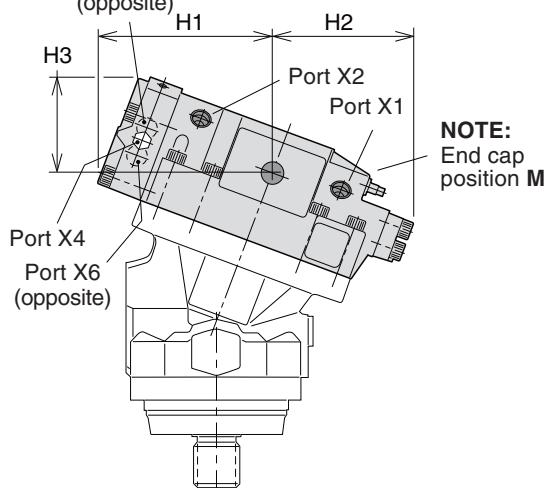

NOTE: - The basic motor side port locations are shown on pages 14, 16 and 18.
 - End cap position: Refer to the ordering codes, pages 10-12.

2

AC and AH compensators


Dim.	V12-60	-80	-160
A1	132	138	170
A2	186	188	206
A3	143	145	162
A4	55	57	67

- Control/gauge ports are:
 - M14x1.5 (ISO and cartridge versions).
 - $9/16$ "-18 UNF (SAE version).
- All dimensions are max.


EO and EP controls

Dim.	V12-60	-80	-160
E1	190	192	208
E2	121	125	155
E3	106	106	115

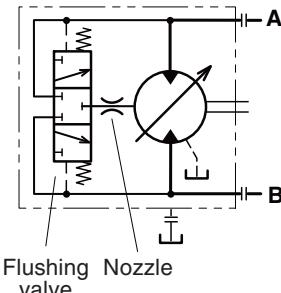
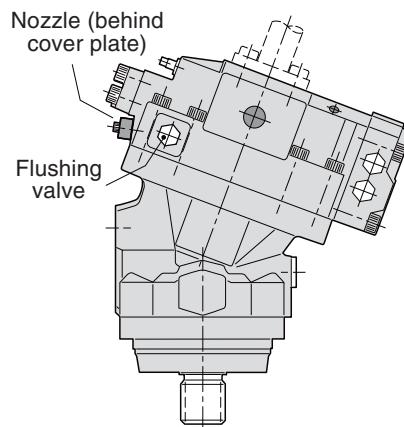
HO and HP controls

Dim.	V12-60	-80	-160
H1	153	156	170
H2	121	125	153
H3	86	85	92

Flushing valve

As an option, **L**, the V12 is available with a flushing (or shuttle) valve that supplies the motor with a cooling flow through the case. Cooling the motor may be required when operating at high speeds and/or power levels.

The flushing valve consists of a three-position, three-way spool valve built into a special end cap. It connects the low pressure side of the main circuit to a nozzle (optional size) that empties fluid into the motor case.



In a closed circuit transmission, the flushing valve removes part of the fluid in the main loop. The removed fluid is continuously being replaced by cool, filtered fluid from the low pressure charge pump on the main pump.

NOTE: The flushing valve ordering code is shown on page 13 ('L 01').

Available nozzles

Nozzle design.	Orifice size [mm]	Status
L 01	1.3	Standard
L 02	0.8	Optional
L 03	1.0	"
L 04	1.2	"
L 05	1.5	"
L 06	1.7	"
L 07	2.0	"
L 08	3.0	"

NOTE: - '00' - no nozzle

High speed operation

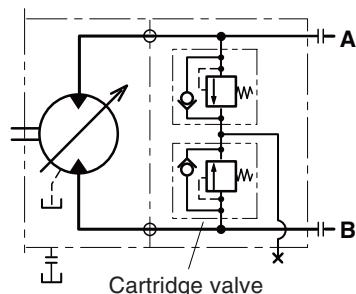
Contact Parker Hannifin for additional information.

Accessory valve blocks

SR pressure relief/check valve

To protect the main hydraulic circuit from unwanted pressure peaks, an add-on valve block, type SR, with two independent pressure relief cartridges and two large capacity check valves can be ordered for series V12.

The valve block is mounted on the motor end cap as shown to the right. The individual cartridge has a fixed, factory-set opening pressure.


An external port for make-up fluid is provided. When sufficiently pressurized, it prevents motor cavitation due to pressure losses in the main circuit.

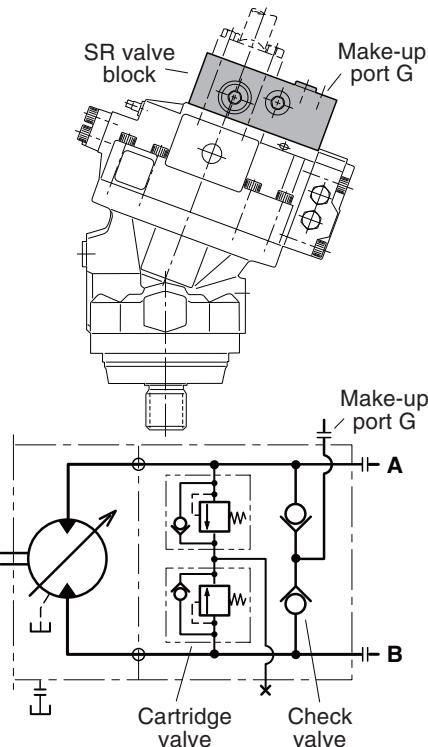
For additional information, refer to 'Mobile motor/pump accessories' (catalogue HY17-8258/UK).

SV pressure relief valves

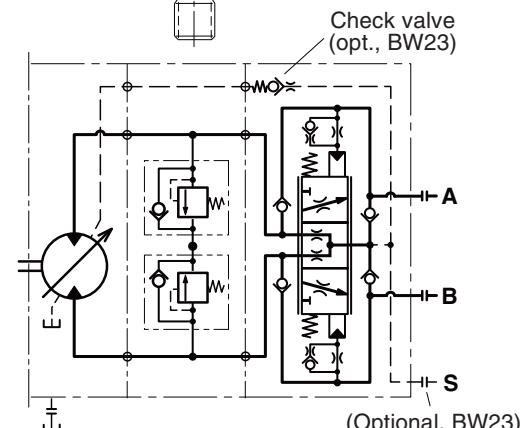
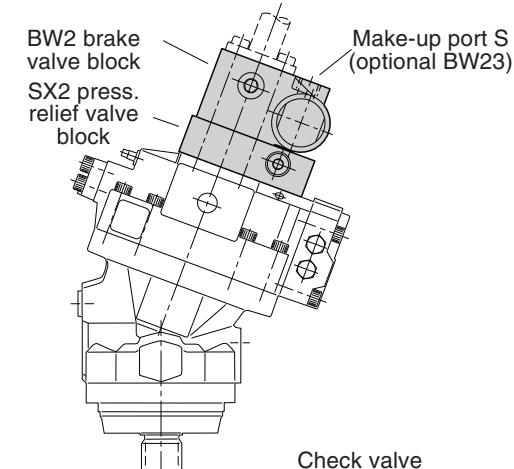
The SV relief valve block is an alternative to the SR valve block above.

The SV contains the same cartridge valves as the SR but lacks the two check valves; refer to the SV schematic, below, and to 'Mobile motor/pump accessories' (catalogue HY17-8258/UK).

V12 with SV relief valve block.


BW2/SX2 brake/relief valves

In applications, such as open circuit wheel drives, a counterbalance or 'brake' valve is required. It provides smooth braking and greatly reduces the risk of motor cavitation when coasting or braking.

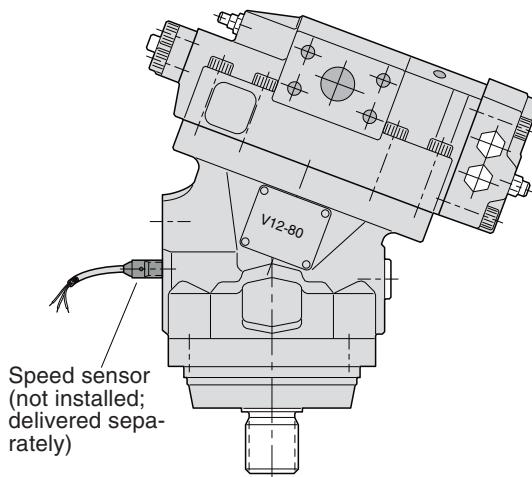


Brake/relief valves, type BW2/SX2, are available for series V12 motors. The two valve blocks mount directly on the motor end cap as shown to the right.

As an option, size BW23 can be supplied with a make-up port; when sufficiently pressurized, motor cavitation due to pressure losses in the main circuit is being prevented.

For additional information, refer to 'Mobile motor/pump accessories' (catalogue HY17-8258/UK).

V12 with SR relief valve block.

V12 with BW2/SX2 brake/relief valve blocks.


Speed sensor

A speed sensor kit is available for the **I** and **S** versions of series V12.

The ferrostat differential (Hall-effect) sensor installs in a separate, threaded hole in the V12 bearing housing. The speed sensor is directed towards the V12 shaft flange and outputs a square wave signal within a frequency range of 5 Hz to 20 kHz. Number of pulses per shaft rev is 36 which, at 5 Hz, corresponds to approx. 8 rpm.

When a 'Speed sensor' is ordered (refer to the ordering codes on pages 10 and 12), the housing is machined with the threaded hole; the speed sensor kit is delivered in a separate bag.

NOTE: - The motor bearing housing must be prepared for the speed pick-up; refer to the V12 ordering codes on pg. 10 and 12.
- Additional information is provided in our publication 'Mobile motor/pump accessories' (catalogue HY17-8258/UK); available from Parker Hannifin.
- The speed sensor is also shown in the illustrations on pg. 14 and 18.

